a solve ODE by seperation of variables b find the particular
a) solve ODE by seperation of variables
b) find the particular solution if y(0)=0
(1/x^2 e^x) dy = (1 + y^2) dx solve ODE by seperation of variables find the particular solution if y(0)=0Solution
given (1/(x2ex)) dy =(1+y2) dx
seperate variables
dy/(1+y2) =x2ex dx
integrate on both sides
dy/(1+y2) =x2ex dx
tan-1(y)=x2ex dx
integration by parts:u=x2,du =2xdx , dv =exdx,v=ex
udv =uv-vdu
tan-1(y)=x2ex - ex2xdx
tan-1(y)=x2ex - 2xexdx
integration by parts:u=x,du =dx , dv =exdx,v=ex
udv =uv-vdu
tan-1(y)=x2ex - 2[xex- exdx]
tan-1(y)=x2ex - 2[xex- ex] +c
tan-1(y)=x2ex - 2xex+2ex+c
y=tan(x2ex - 2xex+2ex+c)
b)y(0)=0
0=02e0 - 2*0e0+2e0+c
0=0-0+2+c
c=-2
y=tan(x2ex - 2xex+2ex-2) is particular solution
