Find the arclength of the curve rt4sqrt2te4te4t 0t1Solutionr

Find the arclength of the curve r(t)=4sqrt(2t),e^4t,e^4t, 0t1

Solution

r(t)=<4sqrt(2t),e^4t,e^4t>

r \'(t)=<4/sqrt(2t),4e^4t,-4e^4t>

|r \'(t)|=sqrt[(4/sqrt(2t))2+(4e4t)2+(-4e-4t)2]

|r \'(t)|=sqrt[(8/t)+(16e8t)+(16e-8t)]

arclength =integral[0 to 1] |r\'(t)| dt

=integral[0 to 1] sqrt[(8/t)+(16e8t)+(16e-8t)] dt

=55.67 units

arclength =55.67 units


Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site